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SUMMARY

While present-day taxa are valuable proxies for
understanding the biology of extinct species, it is
also crucial to examine physical remains in order to
obtain a more comprehensive view of their behavior,
social structure, and life histories [1, 2]. For example,
information on demographic parameters such as age
distribution and sex ratios in fossil assemblages can
be used to accurately infer socioecological patterns
(e.g., [3]). Here we use genomic data to determine
the sex of 98woollymammoth (Mammuthus primige-
nius) specimens in order to infer social andbehavioral
patterns in the last 60,000 years of the species’ exis-
tence.We report a significant excess ofmales among
the identified samples (69% versus 31%; p < 0.0002).
We argue that this male bias among mammoth re-
mains is best explained by males more often being
caught in natural traps that favor preservation.Wehy-
pothesize that this is a consequence of social struc-
ture in proboscideans, which is characterized by
matriarchal hierarchy and sex segregation. Without
the experience associated with living in a matriarchal
family group, or a bachelor group with an experi-
enced bull, young or solitary males may have been
more prone to die in natural trapswhere good preser-
vation is more likely.

RESULTS AND DISCUSSION

Sampling and Sexing
To investigate the sex of the mammoth remains, we generated

low-coverage genomic data from 83 bone, tooth, and tusk sam-
C

ples collected at various locations throughout Siberia (Figure 1;

Table S1). The samples mostly comprise individual fragments

found in river basins and along coastlines and lake shores, where

they have been redeposited after erosion from permafrost sedi-

ments. DNA was extracted using a silica-based method [4, 5],

converted into indexed libraries [6], and sequenced on an Illu-

mina HiSeq 2500 platform. Additionally, we included previously

published whole-genome shotgun data from mammoth hair

shafts [7, 8] to generate a final dataset of 98 mammoth samples.

Sequence reads were mapped against the genome assembly of

the African savannah elephant (Loxodonta africana). The number

of reads mapping to chromosome X and 8, respectively, were

used to determine the sex of each specimen (for details, see

STAR Methods). In total, 66 specimens were identified as males

and 29 as females (Figure 2).

Causes for a Biased Sex Ratio
All samples were collected opportunistically and do not originate

from fossil assemblages and can thus be considered a random

sample of the available fossil record. In the absence of other fac-

tors, this sampling schemewould be expected to yield a sex ratio

equal to the natal sex ratio, which is usually balanced in mammal

populations [9]. Furthermore, the natal sex ratios in both the wild

Asian elephant (Elephas maximus) and the African savannah

elephant are close to 1:1 [10], suggesting that the natal sex ratio

was most likely also balanced in the woolly mammoth.

We find a role of sexual dimorphism unlikely in explaining the

observed skew in sex ratio. In sexually dimorphic species, taph-

onomic processes such as scavenging, decomposition, and

erosion can lead to differential preservation of male and female

remains. Indeed, the size of skeletal elements affects degrada-

tion processes, with large elements disappearing more slowly

than smaller ones [11]. However, in large megafaunal species

such as mammoths, fossil preservation sex biases are not com-

mon [12], and they are especially unlikely when the remains, as in
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Figure 1. Map Showing Locations of Sample Localities

Numbers within circles show the number of samples collected in more densely sampled regions, from left to right: Taimyr Peninsula, New Siberian Islands,

Chaun Bay area, and Wrangel Island. Three mainland samples with unknown locations are not shown. See also Table S1.
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our case, have been recovered from permafrost where preserva-

tion should be facilitated.

Several of the best preserved woolly mammoths discovered

so far are believed to have died in natural traps such as falling

through thin ice (e.g., the Berezovka mammoth [13]) or getting

caught in a mudflow or drowning in pools (e.g., Lyuba and

Khroma calves, respectively [14]). Similarly, characteristic accu-

mulations of mammoth and mastodon remains have been

observed at sites representing natural traps such as a kettle

hole in Condover, England [15, 16] and Hot Springs, South

Dakota [17], in addition to non-natural trap sites that have

multi-individual accumulations, such as Big Bone Lick in Ken-

tucky [18] and the catastrophic accumulation in Waco, Texas

[19]. Morphological studies of the mammoth remains found at

Hot Springs have shown that the sex ratio was heavily skewed,

with 13 young adult males (10 to 30 years of age) and a single

female [20]. In fact, across Eurasia, the remains from isolated in-

dividuals found in natural traps, such as sinkholes and cre-

vasses, largely represent those of males rather than females [21].

Even though the samples analyzed in this study do not have a

direct association with natural traps, the vast plains of north-

eastern Siberia are known to have been full of ‘‘taphonomic

traps’’ such as gullies, crevices, and sinkholes that formed in

the permafrost [22]. Passing over fragile ice, landslides on river

banks, mud flows, and sinkholes in walls formed by ice veins

were some of the traps in the mammoth steppe landscape

[22]. Therefore, one possible explanation for the skewed sex ra-

tio that we observe in our samples could be that samples pre-

served for thousands of years in permafrost represent, to a

disproportionate extent, male mammoths that have died in these
2 Current Biology 27, 1–6, November 20, 2017
types of natural traps. Taphonomic processes may subse-

quently have facilitated preservation of remains in these traps.

However, why males would die more frequently than females

in such traps remains to be answered.

Male-biased dispersal is considered the norm in mammals

[23], including extant elephant species [24, 25]. Dispersal is

stimulated by various factors, such as reduction in competition

for mates and resources [26] or inbreeding avoidance [27], and

is usually highly related to the social structure of a species [28].

In ungulates, various hypotheses have been proposed to

explain the spatial segregation of sexes [29], and a study on

free-ranging African savannah elephants in Botswana suggests

that differences in habitat use between elephant bull groups

and family units are responsible for the segregation [30].

Whereas female movement is limited by the presence of

offspring, males are able to move further and explore more

remote patches of vegetation. Moreover, ranging behavior of

elephant males is influenced by musth. Males in musth can

travel over long distances seeking out receptive females

[31, 32]. Males that are not in musth might disperse to consid-

erable distance to avoid bulls in musth that express aggressive

behavior due to high hormone levels [30]. Dispersal represents

a considerable cost in fitness as it is sometimes associated

with a higher mortality risk [33]. Mortality resulting from sex-

biased dispersal should therefore be reduced when dispersal

possibilities are limited. To test this hypothesis, we compared

the sex ratios in samples collected from the Siberian mainland

(n = 46) and from Wrangel Island (n = 49), where a population of

woolly mammoths survived in isolation for over 6,000 years

after the rise of sea levels at the end of the last glaciation.



Figure 2. Determination of Sex, Based on a Comparison of the Num-

ber of Reads Mapping to Chromosome X and to Chromosome 8

Gray areas depict the ranges where most of samples clustered within the male

and female categories. Dotted lines show confidence intervals. Orange dots

represent samples assigned as males, and blue dots represent females.

Labels on the left side are sample IDs, and labels on the right side show sample

radiocarbon dates. See also Table S1.
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Although long-distance dispersal most likely occurred on the

Siberian mainland [34], dispersal must have been more limited

on the comparatively small (7,600 km2) Wrangel Island, where

most of the area consists of mountains, rocks, ice, and snow

fields, i.e., habitat not suitable for mammoths. The ranging

behavior of extant elephants is influenced by various environ-

mental and social factors, and data from present elephant pop-

ulations show that proboscidean home range sizes can vary by

orders of magnitude—e.g., insular Asian elephant populations

from Sri Lanka have a home range of �60 km2, whereas Asian

elephant populations from mainland southern India have a

home range ten times larger [35]—suggesting that the woolly

mammoth home ranges on Wrangel Island might have been

smaller than those on the Siberian mainland. Considering that

dispersal distance is proportional to the home range size [36],

we assume that male dispersal on Wrangel Island was more

restricted. Thus, if sex-biased dispersal alone led males to be

more often caught in natural traps, we would have expected

a less skewed sex ratio in the Wrangel Island remains. How-

ever, we did not observe a difference in the sex ratios between

these two groups of samples (Figure 3; p > 0.05), suggesting

that sex-biased mortality during dispersal cannot solely explain

the skewed sex ratio in mammoth fossil deposits.

Similar to other proboscideans, woolly mammoths are thought

to have lived in sex-segregated herds centered around a matri-

archal group consisting of a dominant female and her offspring

and solitary or loosely associated males [37]. Sex segregation

has been observed in fossil trackways from the Miocene, sug-

gesting that this social structure may be an ancestral feature of

proboscideans [38]. Moreover, evidence from fossil deposits

[13, 39] supports the assumption that mammoth social structure

was very similar to the structure of extant elephant social groups

and that a mammoth herd most likely consisted of a small num-

ber of adult females and juveniles. Upon reaching maturity at

around 13–15 years of age,males dispersed from their natal fam-

ily unit. Depending on their age and sexual state, adult males

probably spent time alone or in small groups of other males in

particular bull areas [40]. These bachelor groups typically

included individuals of multiple age ranges that could utilize hab-

itats too marginal or poor in resources to be used by family

groups [41]. In the 1980s, Agenbroad and Mead [42, 43] formu-

lated a hypothesis that the male-biased sex ratio in the Hot

Springs assemblage could be explained by the lack of experi-

ence in young males and lack of assistance from conspecifics

in solitary males of all age groups. Without the experience asso-

ciated with the matriarchal family group or more experienced

bulls within a bachelor group, young or solitary males unfamiliar

with their environment might have been especially vulnerable

and likely to enter unfamiliar terrain or take higher risks when

dispersing [21, 44]. As a consequence, males might have had

an increased risk of falling into sinkholes and through the ice of
Current Biology 27, 1–6, November 20, 2017 3



Figure 3. Number of Males and Females in Pleistocene Mainland

Siberia and Wrangel Island

The latter locality, Wrangel Island, includes only samples radiocarbon dated to

after the island was formed (i.e. less than 10,500 years before present). Sex

ratio deviation from parity was significant for the overall sample (p < 0.0002).

When tested separately, the deviation from parity was significant for the

Wrangel samples (p < 0.002) and was very close to being significant for the

mainland Siberian samples (p = 0.054). The difference in sex ratios between

Wrangel Island and mainland Siberia was not significant (p = 0.504). See also

Table S1.
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lakes and rivers, as well as of ending up in mud flows or land-

slides [20]. Quick deposition of such remains would have led to

exceptional preservation of these ill-fated individuals until the

present day. Although this hypothesis has been proposed to

explain the male bias in fossil assemblages like Hot Springs,

we also hypothesize that most fossil remains found opportunis-

tically as re-deposited elements originate from individuals that,

because of their behavior, died in a way that ensured good

preservation.

These results might have wider ramifications for other studies

of mammoth biology. For example, previous estimates of body

size based on the size of long bones or molar teeth could be

biased if even sex ratios were assumed. Similarly, diet analyses,

for example using stable isotopes, might need to take into

account that most samples originate from male specimens.

Importantly, the genome-based sexing method presented here

provides new opportunities for more detailed studies in the

future, such as exploring sex-specific differences in body size,

diet, and other life history parameters.
Sex Bias in Other Extinct Megafauna
Assuming that social structure can lead to this type of sex bias in

fossil remains, we predict that other Pleistocene fauna that lived

in equivalent female-dominated social groups would show a

similar pattern. For example, paleontological sites such as the

Rancho La Brea and McKittrick tar pits contain various species

of megafauna that were accumulated over thousands of years

as individuals became trapped in the tar [45]. Within the deposits
4 Current Biology 27, 1–6, November 20, 2017
at La Brea, remains from the now-extinct wild horse, Equus

occidentalis, follow the predicted pattern and predominantly

consist of subadult males [46].

On the other hand, the La Brea Tar Pits also contain approxi-

mately 300 bison (Bison antiquus) individuals, with females being

twice as abundant as males [46]. One possible explanation for

this seemingly contradictory pattern is offered by bison social

structure and migration patterns. Bison (Bison bison) form

‘‘mixed’’ groups consisting of calves, young males, and females

of all ages, which cluster during spring forming larger herds [47].

Individual age identification of the La Brea Bison antiquus

remains suggests that groups of adult females and calves

passed through the region in late spring when the asphalt

became sticky [48]. Although speculative, it is therefore possible

that the female-biased skew in sex ratio of La Brea bison remains

reflects the abundance of female-dominated social groups that

visited the region during seasonal migrations. This example im-

plies that despite the expectation of strong male-biased sex ra-

tios in remains from taxa with matriarchal social structure, other

factors of a species’ biology need to be taken into consideration.

Moreover, this result may be a consequence of La Brea being a

single site. However, we predict that among randomly collected

steppe bison (Bison priscus) samples from the permafrost

region, future studies will identify a male-biased sex ratio due

to the species’ social structure, in which females and young

stay together, whereas adult males are more solitary or live in

small temporary groups [49].

Examining the effect of social behavior on sex ratio in fossil

remains can become particularly illustrative when two related

species with different social structure are compared. For

instance, the even sex ratio in fossil assemblages of the extinct

Aphelops rhinoceros [50] is consistent with the solitary behavior

of all extant Rhinocerotidae [51]. However, the extinct rhinoceros

Teleoceras, which may have lived in female-dominated herds

and may have formed bachelor groups [50] shows a strong

male bias in fossil assemblages [50, 52].

Our results demonstrate the utility of isolated and fragmented

fossil remains for reconstructing the socioecology and behavior

of extinct taxa. This approach makes use of easily accessible

data and it has wider application in paleontology. Although our

data warrant a cautious interpretation since only tentative con-

clusions can be drawn, combining fossil and genomic data

marks an important step in the study of sociobiology of extinct

megafauna.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

EDTA ThermoFisher Scientific Cat#15575020

UREA VWR Cat#443874G

ATP Fermentas/ThermFisher Cat#R0441

T4 Polynucleotide Kinase (10U/ul) Fermentas/ThermFisher Cat#EK0032

T4 DNA polymerase 5U/ul Fermentas/ThermFisher Cat#EP0062

USER Enzyme NEB Cat#M5505L

T4 DNA ligase (5U/ul) Fermentas/ThermFisher Cat#EL0011

Tango Buffer Fermentas/ThermFisher Cat#BY5

Bst polymerase NEB Cat#M0275S

AccuPrime Pfx ThermoFisher Scientific Cat#12344-024

Tween20 SigmaAldrich Cas#9005-64-5

Critical Commercial Assays

High Sensitivity DNA Kit Agilent Cat#5067-4626

Deposited Data

166 bam files: chromosomes X and 8 for 83 mammoths This study ENA: PRJEB22575

Oligonucleotides

IS1_adapter.P5: 50-A*C*A*C*TCTTTCCCTACACGACGC

TCTTCCG*A*T*C*T-30 (* indicates a PTO bond)

[6] ThermoFisher Scientific

IS2_adapter.P7: 50-G*T*G*A*CTGGAGTTCAGACGTGTG

CTCTTCCG*A*T*C*T-30
[6] ThermoFisher Scientific

IS3_adapter.P5+P7: 50-A*G*A*T*CGGAA*G*A*G*C-30 [6] ThermoFisher Scientific

IS4: 50-AATGATACGGCGACCACCGAGATCTACACTCT

TTCCCTACACGACGCTCTT-30
[6] ThermoFisher Scientific

Indexing primers [6] ThermoFisher Scientific

Software and Algorithms

SeqPrep 1.1 John St. John https://github.com/jstjohn/SeqPrep

BWA 0.7.8 [53] http://bio-bwa.sourceforge.net/

Samtools 0.1.19 [54] https://sourceforge.net/projects/samtools/

files/samtools/0.1.19/

GraphPad GraphPad Software https://www.graphpad.com/quickcalcs/

contingency1.cfm

Other

Proteinase K VWR Cat#1.24568.0100

Vivaspin filters VWR Cat#512-4003

QiaQuick PCR purification kit QIAGEN Cat#28106

dNTPs VWR Cat#733-1854

Min Elute PCR purification Kit QIAGEN Cat#28006

Agencourt AmPure XP 5mL Kit Beckman Coulter Cat#A63880
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Love Dal�en (love.dalen@

nrm.se).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Woolly mammoth samples analyzed in this study consist of fragments of bones, teeth, and tusks that were collected opportunistically

in various locations throughout Siberia (Table S1). Majority of samples represents isolated elements found in river beds after they had

been eroded from permafrost. The character of the data does not allow morphological identification of sex or age-at-death.

Samples were radiocarbon-dated and are reported in conventional radiocarbon years (BP), which includes correction for isotopic

fractionation and usage of the conventional half-life [55]. The 14C dates are calibrated into calendar ages using the recommended

calibration curve IntCal13 [56] using the program OxCal 4.2 [57]. Medians of the calibrated dates are reported in calBP, i.e., calendar

years relative to 1950 AD.

METHOD DETAILS

DNA Extraction
All pre-amplification steps were carried out in a clean ancient DNA facility at the Swedish Museum of Natural History. Contamination

was prevented by using protective suits, gloves, and face masks; by regular bleaching of surfaces and UV-irradiation of tools; and by

using negative controls during all extraction and library-building steps.

Bone powder was obtained using a hand-held Dremel drill and DNAwas extracted from the powder following amodified version of

a silica-based protocol [4, 5]. Approximately 50 mg of bone powder were incubated overnight under motion in 715 mL of extraction

buffer (0.45M EDTA, 0.1M UREA, 150 mg proteinase K). Following digestion, the DNA is concentrated on a silica membrane of a 30K

MWCO Vivaspin filter (Sartorius) by centrifugation at 2,300 rpm. Purification and elution of extracted DNA is performed using

standard QIAquick PCR Purification Kit (QIAGEN).

Library Preparation
Multiplexed, paired-end, Illumina libraries were prepared from 20 mL of DNA extract following an established protocol [6] using uracil-

treatment with the USER enzyme (New England Biolabs).

The first step of the library build is the blunt-end repair with a reaction mix consisting of following: 1x Buffer Tango, dNTP (100 mM

each), 1 mM ATP, 0.15 U/ml USER enzyme, and 0.5 U/ml T4 PNK. After 3-hour incubation in a thermocycler at 37�C, 0.1 U/ml T4

Polymerase was added and the library was further incubated for 15 min at 25�C followed by 5 min at 12�C. After purification with

the MinElute purification kit (QIAGEN) and elution in 22 mL of EB buffer, adaptor ligation was performed using a following reaction

mix: 1x T4 ligation buffer, 5% PEG-4000, 0.125 U /mL T4 ligase, and an adaptor mix of P7 and P5 adapters 2.5 mM each [6]. Libraries

were incubated for 30 min at 22�C and again cleaned using MinElute purification kit (QIAGEN). Finally, adaptor fill-in was performed

using a reaction mix that consisted of: 1x Thermopol buffer, dNTP (250 mM each), and 0.3 U/ml Bst polymerase. After incubation

at 37�C for 20 min, the final heatkill was performed by incubation at 80�C for 20 min.

Each library was indexed and amplified from 3 mL of library template using a following reaction mix: 0.05U/ ml AccuPrime Pfx DNA

Polymerase (Life Technologies), 2.5 mL of AccuPrime reaction mix, 200 nM of IS4 primer [6], and 200 nM of indexing primer [6].

Libraries were amplified under following conditions: 95�C for 2 min; between 8 and 14 cycles (depending on quality) of: 95�C for

15 s, 60�C for 30 s. Amplified libraries were purified along with size selection using Agencourt AMPure XP beads (Beckman Coulter).

Library concentrations were measured with a high-sensitivity DNA chip on a Bioanalyzer 2100 (Agilent). Multiplexed libraries were

pooled in several separate pools in equimolar concentrations and sequenced using the Illumina HiSeq2500 technology.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Processing
SeqPrep 1.1 (available at https://github.com/jstjohn/SeqPrep) was used to trim adapters and to merge paired-end reads, using

default settings and a minor modification to the source code allowing choosing the best quality scores of bases in the merged region

instead of aggregating the scores. Mappingwas performed using BWA 0.7.8 [53] and the alignments were processed using Samtools

0.1.19 [54]. Sequencing reads weremapped to amerged nuclear-mitochondrial reference consisting of the African savanna elephant

nuclear genome (LoxAfr4) generated by the Broad Institute, and a mammoth mitogenome (Krause; GenBank: DQ188829). BWA aln

algorithm designed for short Illumina reads was used for the mapping, applying slightly modified default settings with deactivated

seeding (-l 16500), allowing more substitutions (-n 0.01) and allowing up to two gaps (-o 2). Alignments were processed in SAMtools

0.1.19, including converting the alignments in SAM format to BAM format, coordinate sorting, indexing, and removing duplicates.

A mapping quality filter of MQ = 30 was applied and both types of files, before and after filtering, were used in the sexing.

Sexing
Since the African savannah elephant genome originates from a female individual, reference for the chromosome Y was not available.

Instead, we made use of the chromosome-level LoxAfr4 assembly and compared the number of reads mapping to an autosome

compared to sex chromosome. Specifically, we compared the number of reads mapping to chromosome 8 and chromosome X,

which are of comparable sizes. The number of mapped reads was normalized by the length of the chromosome sequence.
e2 Current Biology 27, 1–6.e1–e3, November 20, 2017

https://github.com/jstjohn/SeqPrep
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Specimens belonging to males were expected to have about 50% of reads mapping to chromosome X compared to chromo-

some 8, because while female mammoths have two copies of chromosome X, male mammoths only have a single copy. Female

specimens were expected to have a comparable number of reads mapping to both chromosomes.

Confidence Intervals
We estimated upper and lower confidence intervals to identify sample sex from the normalized chromosome X/chromosome 8 ratios

by calculating the standard deviation (SD) on the ratios of all the samples that could be unambiguously assigned asmales (ratio < 0.6)

and females (ratio > 0.8) (Figure 2, gray areas). Then, the upper limit of the ratio to identify a sample as male was obtained by adding

3 times themale SD to themale sample with the highest ratio, and the lower ratio for females, by subtracting 3 times the female SD to

the female sample with lowest ratio (Figure 2, dotted lines). Out of the total dataset of 98 specimens, 95 fell into one of the two

categories - male or female - while three samples could not be determined with confidence.

Statistical Tests
In order to test if the observed sex ratio differed from the null expectation of a 1:1 sex ratio, we used a two-tailed binomial test applied

to the dataset of sex-determined samples (N = 95) as well as to Wrangel Island (N = 49) and to mainland Siberia (N = 46) datasets

separately. Sex ratio deviation from parity was significant for the overall sample (p < 0.0002). When tested separately, the deviation

from parity was significant for the Wrangel samples (p < 0.002), and marginally significant for the mainland Siberian samples

(p = 0.054).

To test for differences in sex ratios between Wrangel Island and mainland Siberia, we used a two-tailed Fisher’s exact test

(available at https://www.graphpad.com/quickcalcs/contingency1.cfm), which showed that sex ratios on Wrangel and the mainland

did not significantly differ from each other (p = 0.504).

DATA AND SOFTWARE AVAILABILITY

The accession number for the bam files containing chromosomes 8 and X of 83 newwoolly mammoth samples reported in this paper

is ENA: PRJEB22575.
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