Cómo el magnetismo puede mejorar la producción de hidrógeno para almacenar energía
El desarrollo de esta fuente de energía conllevaría una disminución de la huella ambiental antropogénica
La producción y el empleo de hidrógeno como fuente de energía limpia, renovable y sostenible es una prioridad de la Unión Europea para la transición ecológica de las próximas décadas.
El hidrógeno verde permitiría una disminución, si no una eliminación por completo, del uso de los combustibles fósiles. Esto conllevaría una disminución de la huella ambiental antropogénica, con una reducción inmediata de la emisión de gases de efecto invernadero, sulfuros, óxidos de nitrógeno y otros contaminantes.
Hidrógeno para almacenar energía
La producción de hidrógeno se lleva a cabo mediante la descomposición del agua. Esta se divide en sus componentes fundamentales: hidrógeno y oxígeno. La energía eléctrica necesaria para este proceso químico procederá, idealmente, de fuentes renovables como la fotovoltaica o la eólica, por ejemplo (Ver ilustración 1.a).
La descomposición del agua se divide en dos subreacciones, que tienen lugar en dos semiceldas: la evolución de oxígeno (ánodo) y la evolución de hidrógeno (cátodo). La presencia de un catalizador heterogéneo (sólido) que se deposita encima de los electrodos aumenta la velocidad de las dos semirreacciones.
La producción de hidrógeno es el primer paso para almacenar la electricidad originada intermitentemente, por ejemplo por centrales fotovoltaicas solo cuando hay sol, en forma de energía química.
La oxidación de hidrógeno para recuperar la energía eléctrica almacenada es la reacción inversa a la descomposición de agua. En este caso, el hidrógeno y el oxígeno reaccionan en una pila de combustible para producir energía, calor y, como subproducto, el agua.
La oxidación de hidrógeno se puede también dividir en dos subrreacciones (Ver ilustración 1b): la oxidación de hidrógeno (ánodo) y la reducción de oxígeno (cátodo).
Magnetismo para acelerar reacciones químicas
El magnetismo es un parámetro físico de los catalizadores sólidos que puede acelerar reacciones de descomposición de agua para producir hidrógeno y de oxidación de hidrógeno. Por eso, los químicos estudiamos la correlación entre magnetismo y catálisis heterogénea para aplicarlo en la producción de energía limpia.
De forma sencilla, se podría decir que el magnetismo de un sólido es el resultado macroscópico de los acoplamientos de los espines electrónicos de sus electrones.
El espín es el momento magnético intrínseco de un electrón que surge de incorporar la teoría de la relatividad a la mecánica cuántica (autores fundamentales en este campo son los científicos P. Dirac y W. Pauli). Una analogía clásica sería asemejar el electrón a una peonza, que puede girar en sentido horario, con vector de momento angular que apunta abajo, o en sentido antihorario, con vector que apunta arriba (Ver ilustración 2).
En estructuras multielectrónicas complejas, como los sólidos cristalinos, muchos espines electrónicos se juntan y cooperan entre ellos. Este fenómeno puede llevar a la formación de dominios ferromagnéticos (todos los espines apuntan en la misma dirección), antiferromagnéticos (la mitad de los espines apuntan en una dirección y la otra mitad en la dirección opuesta) y no colineales (los espines apuntan a direcciones casuales) (ilustración 2). La resultante macroscópica de todas estas combinaciones forma los materiales magnéticos.
En un reciente estudio, hemos explicado el comportamiento de los electrones, los movimientos diferenciados por sus espines, las interacciones de correlación y la formación de dominios intrínsecos en catalizadores magnéticos y el impacto de todos estos factores en catálisis heterogénea. El trabajo, publicado en la revista ACS Catalysis, es resultado de una colaboración entre la Universidad Jaume I de Castellón de la Plana y la empresa MagnetoCat SL de Alicante para el consorcio SPINCAT.
La investigación demuestra que los mecanismos de intercambio cuántico de espín son fundamentales para establecer fases predominantemente ferromagnéticas y con conductividad metálica en catalizadores heterogéneos. Es decir, dos electrones con mismo espín implementan mecanismos de intercambio cuántico de momento y posición para reducir la repulsión entre sus cargas negativas.
Además, todos los electrones pueden «saltar» a niveles energéticos más altos (y menos cercanos a los núcleos de los átomos) para compensar repulsiones de sus cargas. Estas dos propiedades son las que determinan el magnetismo y la conductividad de catalizadores sólidos y son ideales para catalizar (acelerar) eficientemente tanto la descomposición del agua como la oxidación del hidrógeno.
Este hecho es tan relevante que las catálisis mediadas por sólidos magnéticos definen una nueva rama de la catálisis heterogénea, la espintrocatálisis, o sea, una catálisis afectada, modulada y mejorada usando tanto el espín como los dominios magnéticos intrínsecos al catalizador, así como la influencia de imanes magnéticos externos (o una mezcla de los dos efectos).
Desarrollo de catalizadores magnéticos
La primera estrategia para desarrollar catalizadores sólidos es de prueba y error: es una estrategia puramente empírica, aplicada en laboratorios experimentales de síntesis química. De esta manera, se intenta llegar a catalizadores evolucionados a través de la síntesis indistinta y de la caracterización de la actividad catalítica de cada muestra sintetizada. Este planteamiento es robusto, pero muy costoso y con una gran huella ambiental por los reactivos químicos que se emplean.
La segunda estrategia es enteramente basada en el diseño catalítico computacional preventivo y, como último paso, la síntesis final solamente del catalizador «bueno». Esta estrategia está más en línea con los principios de química verde y sostenible.
El hardware y las implementaciones de mecánica cuántica en software han evolucionado bastante en estos últimos años. La microcomputación híbrida resulta muy eficiente en diseño catalítico, ya que aúna rapidez de cálculo (típica de workstations) y fiabilidad en manejo de datos (típica de servidores) (ilustración 3).
La microcomputación también está en línea con la política verde porque permite rebajar mucho los gastos asociados comúnmente a salas de servidores sin sacrificar rendimiento.
Nuestro grupo de investigación está en primera línea en el uso de microcomputación para estudiar los efectos magnéticos en aleaciones de platino y hierro, cobalto y níquel (Ver ilustración 3) y en el diseño de catalizadores magnéticos.
Este artículo fue publicado originalmente en The Conversation. Lea el original.